Fusarium Literature – Intestinal Tract

 

 

Du K, Wang C, Liu P, Li Y, Ma X. Effects of Dietary Mycotoxins on Gut Microbiome. Protein Pept Lett. 2017 Feb 22. PMID: 28240164

Yang Y, Yu S, Tan Y, Liu N, Wu A. Individual and Combined Cytotoxic Effects of   Co-Occurring Deoxynivalenol Family Mycotoxins on  Human Gastric Epithelial Cells. Toxins (Basel). 2017 Mar 9;9(3). PMID: 28282954

Makowska K, Obremski K, Zielonka L, Gonkowski S. The Influence of Low Doses of Zearalenone and T-2 Toxin on Calcitonin Gene Related Peptide-Like Immunoreactive (CGRP-LI) Neurons in the ENS of the Porcine Descending Colon. Toxins (Basel). 2017 Mar 10;9(3). PMID: 28287437

Oswald E, Oswald IP. The Food Contaminant Deoxynivalenol Exacerbates the Genotoxicity of Gut Microbiota. Payros D, Dobrindt U, Martin P, Secher T, Bracarense AP, Boury M, Laffitte J, Pinton P,  MBio. 2017 Mar 14;8(2). PMID: 28292979

Dänicke S, Beineke A, Berk A, Kersten S. Deoxynivalenol (DON) Contamination of Feed and Grinding Fineness: Are There Interactive Implications on Stomach Integrity and Health of Piglets? Toxins (Basel). 2017 Jan 1;9(1). PMID: 28045426

Makowska K, Gonkowski S, Zielonka L, Dabrowski M, Calka J. T2 Toxin-Induced Changes in Cocaine- and Amphetamine-Regulated Transcript (CART)-Like Immunoreactivity in the Enteric Nervous System Within Selected Fragments of the Porcine Digestive Tract. Neurotox Res. 2017 Jan;31(1):136-147. PMID: 27738989

Liu M, Zhu D, Guo T, Zhang Y, Shi B, Shan A, Chen Z. Toxicity of zearalenone on the intestines of pregnant sows and their offspring and alleviation with modified halloysite nanotubes. J Sci Food Agric. 2017 Jul 3. PMID: 28671336

Robert H, Payros D, Pinton P, Théodorou V, Mercier-Bonin M, Oswald IP. Impact of mycotoxins on the intestine: are mucus and microbiota new targets? J Toxicol Environ Health B Crit Rev. 2017 Jun 21:1-27. PMID: 28636450

Alassane-Kpembi I, Puel O, Pinton P, Cossalter AM, Chou TC, Oswald IP. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenolhas a synergistic inflammatory effect on intestinal explants. Arch Toxicol. 2017 Jul;91(7):2677-2687. PMID: 27915442

Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch Toxicol. 2017 Mar;91(3):1007-1029. PMID: 27417439

Springler A, Vrubel GJ, Mayer E, Schatzmayr G, Novak B. Effect of Fusarium-Derived Metabolites on the Barrier Integrity of Differentiated Intestinal Porcine Epithelial Cells (IPEC-J2). Toxins (Basel). 2016 Nov 19;8(11). PMID: 27869761

Cirlini M, Barilli A, Galaverna G, Michlmayr H, Adam G, Berthiller F, Dall’Asta C. Study on the uptake and deglycosylation of the masked forms of zearalenone in human intestinal Caco-2 cells. Food Chem Toxicol. 2016 Dec;98(Pt B):232-239. PMID: 27816555

Zhang ZQ, Wang SB, Wang RG, Zhang W, Wang PL, Su XO. Phosphoproteome Analysis Reveals the Molecular Mechanisms Underlying Deoxynivalenol-Induced Intestinal Toxicity in IPEC-J2 Cells. Toxins (Basel). 2016 Sep 22;8(10). PMID: 27669298

Gao YN, Wang JQ, Li SL, Zhang YD, Zheng N. Aflatoxin M1 cytotoxicity against human intestinal Caco-2 cells is enhanced in the presence of other mycotoxins. Food Chem Toxicol. 2016 Oct;96:79-89. PMID: 27470613

Broekaert N, Devreese M, Demeyere K, Berthiller F, Michlmayr H, Varga E, Adam G, Meyer E, Croubels S. Comparative in vitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells. Food Chem Toxicol. 2016 Sep;95:103-9. PMID: 27338712

Ling KH, Wan ML, El-Nezami H, Wang M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem Res Toxicol. 2016 May 16;29(5):823-33. PMID: 27058607

Gu MJ, Song SK, Lee IK, Ko S, Han SE, Bae S, Ji SY, Park BC, Song KD, Lee HK, Han SH, Yun CH. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res. 2016 Feb 9;47:25. PMID: 26857454

Braicu C, Cojocneanu-Petric R, Jurj A, Gulei D, Taranu I, Gras AM, Marin DE, Berindan-Neagoe I. Microarray based gene expression analysis of Sus Scrofa duodenum exposed to zearalenone: significance to human health. BMC Genomics. 2016 Aug 17;17:646. PMID: 27530161

Vejdovszky K, Warth B, Sulyok M, Marko D. Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells. Toxicol Lett. 2016 Jan 22;241:1-8. PMID: 26529482

Pierron A, Alassane-Kpembi I, Oswald IP. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag. 2016 Sep 14;2:21. PMID: 28405447

Szabó-Fodor J, Bors I, Szabó A, Kovács M. Comparison of the amount of bioaccessible fumonisin B1 and B2 in maize and rice inoculated with Fusarium verticillioides (MRC 826) and determined by in vitro digestion-preliminary results. Mycotoxin Res. 2016 Aug;32(3):173-8. PMID: 27364334

Gajęcka M, Zielonka Ł, Gajęcki M. Activity of Zearalenone in the Porcine Intestinal Tract. Molecules. 2016 Dec 24;22(1). PMID: 28029134

Lee IK, Kye YC, Kim G, Kim HW, Gu MJ, Umboh J, Maaruf K, Kim SW, Yun CH. Stress, Nutrition, and Intestinal Immune Responses in Pigs – A Review. Asian-Australas J Anim Sci. 2016 Aug;29(8):1075-82. PMID: 27189643

Romero A, Ares I, Ramos E, Castellano V, Martínez M, Martínez-Larrañaga MR, Anadón A, Martínez MA. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. Toxicology. 2016 Apr 15;353-354:21-33. PMID: 27153755

Masching S, Naehrer K, Schwartz-Zimmermann HE, Sărăndan M, Schaumberger S, Dohnal I, Nagl V, Schatzmayr D. Gastrointestinal Degradation of Fumonisin B₁ by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine. Toxins (Basel). 2016 Mar 21;8(3). PMID: 27007395

Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. Exp Toxicol Pathol. 2016 Feb-Mar;68(2-3):157-66. PMID: 26679981

Cheat S, Pinton P, Cossalter AM, Cognie J, Vilariño M, Callu P, Raymond-Letron I, Oswald IP, Kolf-Clauw M. The mycotoxins deoxynivalenol and nivalenol show in vivo synergism on jejunum enterocytes apoptosis. Food Chem Toxicol. 2016 Jan;87:45-54. PMID: 26631294

Fernández-Blanco C, Font G, Ruiz MJ. Interaction effects of enniatin B, deoxinivalenol and alternariol in Caco-2 cells. Toxicol Lett. 2016 Jan 22;241:38-48. PMID: 26581633

Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens GP, De Baere S, Mountzouris KC, Su S, Wong EA, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal I, Martel A, Croubels S. Mycotoxins Deoxynivalenol and Fumonisins Alter the Extrinsic Component of Intestinal Barrier in Broiler Chickens. J Agric Food Chem. 2015 Dec 23;63(50):10846-55. PMID: 26632976

Tang Y, Li J, Li F, Hu CA, Liao P, Tan K, Tan B, Xiong X, Liu G, Li T, Yin Y. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med. 2015 Dec;89:944-51. PMID: 26456059

Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, Prusik M, Ziółkowska N, Zielonka Ł, Gajęcki M, Gajęcka M. The effects of low doses of two Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins (Basel). 2015 Nov 11;7(11):4684-705. PMID: 26569306

Alizadeh AM, Mohammadghasemi F, Zendehdel K, Kamyabi-Moghaddam Z, Tavassoli A, Amini-Najafi F, Khosravi A. Apoptotic and proliferative activity of mouse gastric mucosa following oral administration of fumonisin B1. Iran J Basic Med Sci. 2015 Jan;18(1):8-13. PMID: 25810870

Suzuki T, Iwahashi Y. Low toxicity of deoxynivalenol-3-glucoside in microbial cells. Toxins (Basel). 2015 Jan 20;7(1):187-200. PMID: 25609182

Manda G, Mocanu MA, Marin DE, Taranu I. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. Toxins (Basel). 2015 Feb 16;7(2):593-603. PMID: 25690693

Kluess JW, Kahlert S, Kröber A, Diesing AK, Rothkötter HJ, Wimmers K, Dänicke S. Deoxynivalenol, but not E. coli lipopolysaccharide, changes the response pattern of intestinal porcine epithelial cells (IPEC-J2) according to its route of application. Toxicol Lett. 2015 Dec 15;239(3):161-71. PMID: 26417708

Pierron A, Mimoun S, Murate LS, Loiseau N, Lippi Y, Bracarense AP, Liaubet L, Schatzmayr G, Berthiller F, Moll WD, Oswald IP. Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-D-glucoside. Arch Toxicol. 2016 Aug;90(8):2037-46. PMID: 26404761

Antonissen G, Croubels S, Pasmans F, Ducatelle R, Eeckhaut V, Devreese M, Verlinden M, Haesebrouck F, Eeckhout M, De Saeger S, Antlinger B, Novak B, Martel A, Van Immerseel F. Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet Res. 2015 Sep 23;46:98. PMID: 26394675

Zielonka Ł, Waśkiewicz A, Beszterda M, Kostecki M, Dąbrowski M, Obremski K, Goliński P, Gajęcki M. Zearalenone in the Intestinal Tissues of Immature Gilts Exposed per os to Mycotoxins. Toxins (Basel). 2015 Aug 18;7(8):3210-23. PMID: 26295259

Cheat S, Gerez JR, Cognié J, Alassane-Kpembi I, Bracarense AP, Raymond-Letron I, Oswald IP, Kolf-Clauw M. Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops. Toxins (Basel). 2015 May 29;7(6):1945-61. PMID: 26035490

Akbari P, Braber S, Alizadeh A, Verheijden KA, Schoterman MH, Kraneveld AD, Garssen J, Fink-Gremmels J. Galacto-oligosaccharides Protect the Intestinal Barrier by Maintaining the Tight Junction Network and Modulating the Inflammatory Responses after a Challenge with the Mycotoxin Deoxynivalenol in Human Caco-2 Cell Monolayers and B6C3F1 Mice. J Nutr. 2015 Jul;145(7):1604-13. PMID: 26019243

Garbetta A, Debellis L, De Girolamo A, Schena R, Visconti A, Minervini F. Dose-dependent lipid peroxidation induction on ex vivo intestine tracts exposed to chyme samples from fumonisins contaminated corn samples. Toxicol In Vitro. 2015 Aug;29(5):1140-5. PMID: 25956791

Del Regno M, Adesso S, Popolo A, Quaroni A, Autore G, Severino L, Marzocco S. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells. Toxicol Appl Pharmacol. 2015 Jun 1;285(2):118-27. PMID: 25882925

Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald IP, Maresca M. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β. Mol Nutr Food Res. 2015 Jun;59(6):1076-87. PMID: 25727397

Cirlini M, Hahn I, Varga E, Dall’Asta M, Falavigna C, Calani L, Berthiller F, Del Rio D, Dall’Asta C. Hydrolysed fumonisin B1 and N-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions. Int J Food Sci Nutr. 2015 Feb;66(1):98-103. PMID: 25472591

Taranu I, Braicu C, Marin DE, Pistol GC, Motiu M, Balacescu L, Beridan Neagoe I, Burlacu R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol Lett. 2015 Jan 5;232(1):310-25. PMID: 25455459

Ghareeb K, Awad WA, Böhm J, Zebeli Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: poultry and swine. J Appl Toxicol. 2015 Apr;35(4):327-37. PMID: 25352520

Liu M, Gao R, Meng Q, Zhang Y, Bi C, Shan A. Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats. PLoS One. 2014 Sep 2;9(9):e106412. PMID: 25180673

Gu MJ, Song SK, Park SM, Lee IK, Yun CH. Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression. Asian-Australas J Anim Sci. 2014 Apr;27(4):580-6. PMID: 25049991

Alassane-Kpembi I, Puel O, Oswald IP. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol. 2015 Aug;89(8):1337-46. PMID: 25033990

Awad WA, Zentek J. The feed contaminant deoxynivalenol affects the intestinal barrier permeability through inhibition of protein synthesis. Arch Toxicol. 2015 Jun;89(6):961-5. PMID: 24888376

Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel). 2014 May 21;6(5):1615-43. PMID: 24859243

Wang Y, Wu W, Wang X, He C, Yue H, Ren Z, Zhang H. Inhibitory effects of deoxynivalenol on gastric secretion in rats. J Food Prot. 2014 Aug;77(8):1367-71. PMID: 25198599

Sousa FC, Schamber CR, Amorin SS, Natali MR. Effect of fumonisin-containing diet on the myenteric plexus of the jejunum in rats. Auton Neurosci. 2014 Oct;185:93-9. PMID: 25183308

Piotrowska M, Sliżewska K, Nowak A, Zielonka L, Zakowska Z, Gajęcka M, Gajęcki M. The effect of experimental fusarium mycotoxicosis on microbiota diversity in porcine ascending colon contents. Toxins (Basel). 2014 Jul 14;6(7):2064-81. PMID: 25025709

Roig M, Meca G, Marín R, Ferrer E, Mañes J. Antibacterial activity of the emerging Fusarium mycotoxins enniatins A, A₁, A₂, B, B₁, and B₄ on probiotic microorganisms. Toxicon. 2014 Jul;85:1-4. PMID: 24751367

Wan LY, Allen KJ, Turner PC, El-Nezami H. Modulation of mucin mRNA (MUC5AC and MUC5B) expression and protein production and secretion in Caco-2/HT29-MTX co-cultures following exposure to individual and combined Fusarium mycotoxins. Toxicol Sci. 2014 May;139(1):83-98. PMID: 24496642

Gaigé S, Djelloul M, Tardivel C, Airault C, Félix B, Jean A, Lebrun B, Troadec JD, Dallaporta M. Modification of energy balance induced by the food contaminant T-2 toxin: a multimodal gut-to-brain connection. Brain Behav Immun. 2014 Mar;37:54-72. PMID: 24355099

Wang SK, Wang TT, Huang GL, Shi RF, Yang LG, Sun GJ. Stimulation of the proliferation of human normal esophageal epithelial cells by fumonisin B<sub>1</sub> and its mechanism. Exp Ther Med. 2014 Jan;7(1):55-60. PMID: 24348764.

Park J, Lee HH, Youn K, Kim S, Jung B, Lee J, Seo YS. Transcriptome analyses to understand effects of the Fusarium deoxynivalenol and nivalenol mycotoxins on Escherichia coli. J Biotechnol. 2014 Dec 20;192 Pt A:231-9. PMID: 25456064

Waśkiewicz A, Beszterda M, Kostecki M, Zielonka Ł, Goliński P, Gajęcki M. Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. Toxins (Basel). 2014 Mar 5;6(3):973-87. PMID: 24603665

Akbari P, Braber S, Gremmels H, Koelink PJ, Verheijden KA, Garssen J, Fink-Gremmels J. Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J. 2014 Jun;28(6):2414-29. PMID: 24568843

Minervini F, Garbetta A, D’Antuono I, Cardinali A, Martino NA, Debellis L, Visconti A. Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line. Arch Environ Contam Toxicol. 2014 Jul;67(1):115-23. PMID: 24549592

Saint-Cyr MJ, Perrin-Guyomard A, Houée P, Rolland JG, Laurentie M. Evaluation of an oral subchronic exposure of deoxynivalenol on the composition of human gut microbiota in a model of human microbiota-associated rats. PLoS One. 2013 Nov 18;8(11):e80578. PMID: 24260424

Basso K, Gomes F, Bracarense AP. Deoxynivanelol and fumonisin, alone or in combination, induce changes on intestinal junction complexes and in E-cadherin expression. Toxins (Basel). 2013 Nov 28;5(12):2341-52. PMID: 24287571

Gajęcka M, Stopa E, Tarasiuk M, Zielonka L, Gajęcki M. The expression of type-1 and type-2 nitric oxide synthase in selected tissues of the gastrointestinal tract during mixed mycotoxicosis. Toxins (Basel). 2013 Nov 22;5(11):2281-92. PMID: 24284830

Akbari Peyman, Braber Saskia, Gremmels Hendrik, et al. Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB journal. 2014.

Kadota Tomoyuki, Furusawa Hiroko, Hirano Satoshi, Tajima Osamu, Kamata Yoichi, Sugita-Konishi Yoshiko. Comparative study of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol on intestinal transport and IL-8 secretion in the human cell line Caco-2. Toxicology in vitro : an international journal published in association with BIBRA. 2013;27:1888–1895.

Halawa Amal, Dänicke Sven, Kersten Susanne, Breves Gerhard. Intestinal transport of deoxynivalenol across porcine small intestines. Archives of animal nutrition. 2013;67:134–146.

Lucioli Joelma, Pinton Philippe, Callu Patrick, et al. The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. Toxicon. 2013;66:31–36.

Kolf-Clauw Martine, Sassahara Marcia, Lucioli Joelma, et al. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Archives of toxicology. 2013;87:2233–2241.

Alassane-Kpembi Imourana, Kolf-Clauw Martine, Gauthier Thierry, et al. New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicology and applied pharmacology. 2013;272:191–198.

Wan Lam Yim Murphy Y., Turner Paul C., El-Nezami Hani. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013;57:276–283.

Grenier Bertrand, Applegate Todd J.. Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins. 2013;5:396–430.

Ghareeb Khaled, Awad Wageha A., Soodoi Chimidtseren, Sasgary Soleman, Strasser Alois, Böhm Josef. Effects of feed contaminant deoxynivalenol on plasma cytokines and mRNA expression of immune genes in the intestine of broiler chickens. PloS one. 2013;8.

Osselaere A., Li S. J., De Bock L., et al. Toxic effects of dietary exposure to T-2 toxin on intestinal and hepatic biotransformation enzymes and drug transporter systems in broiler chickens. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013;55:150–155.

Wan Murphy Lam-Yim L., Woo Chit-Shing Jackson S., Allen Kevin J., Turner Paul C., El-Nezami Hani. Modulation of porcine β-defensins 1 and 2 upon individual and combined Fusarium toxin exposure in a swine jejunal epithelial cell line. Applied and environmental microbiology. 2013;79:2225–2232.

Cano Patricia M., Seeboth Julie, Meurens François, et al. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. PloS one. 2013;8.

Yunus Agha Waqar W., Kröger Susan, Tichy Alexander, Zentek Jürgen, Böhm Josef. Electrophysiological response of chicken’s jejunal epithelium to increasing levels of T-2 toxin. Mycotoxin research. 2013;29:23–27.

Klunker L. R., Kahlert S., Panther P., et al. Deoxynivalenol and E.coli lipopolysaccharide alter epithelial proliferation and spatial distribution of apical junction proteins along the small intestinal axis. Journal of animal science. 2013;91:276–285.

Bianco Giuseppe, Fontanella Bianca, Severino Lorella, Quaroni Andrea, Autore Giuseppina, Marzocco Stefania. Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study. PloS one. 2012;7.

Smith Laura E., Stoltzfus Rebecca J., Prendergast Andrew. Food chain mycotoxin exposure, gut health, and impaired growth: a conceptual framework. Advances in nutrition (Bethesda, Md.). 2012;3:526–531.

Dietrich B., Neuenschwander S., Bucher B., Wenk C.. Fusarium mycotoxin-contaminated wheat containing deoxynivalenol alters the gene expression in the liver and the jejunum of broilers. Animal : an international journal of animal bioscience. 2012;6:278–291.

Pinton Philippe, Tsybulskyy Dima, Lucioli Joelma, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological sciences : an official journal of the Society of Toxicology. 2012;130:180–190.

Awad W. A., Aschenbach J. R., Zentek J.. Cytotoxicity and metabolic stress induced by deoxynivalenol in the porcine intestinal IPEC-J2 cell line. Journal of animal physiology and animal nutrition. 2012;96:709–716.

Pacheco Graziela Drociunas D., Silva Caio Abércio da A., Pinton Philippe, Oswald Isabelle P., Bracarense Ana Paula Frederico Rodrigues Loureiro P.. Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity. Experimental and toxicologic pathology. 2012;64:345–347.

Wu Qinghua, Engemann Anna, Cramer Benedikt, Welsch Tanja, Yuan Zonghui, Humpf Hans-Ulrich U.. Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin research. 2012;28:191–198.

Yunus A. W., Blajet-Kosicka A., Kosicki R., Khan M. Z., Rehman H., Böhm J.. Deoxynivalenol as a contaminant of broiler feed: intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poultry science. 2012;91:852–861.

Goossens Joline, Pasmans Frank, Verbrugghe Elin, et al. Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC veterinary research. 2012;8:245+.

Diesing Anne-Kathrin K., Nossol Constanze, Ponsuksili Siriluck, et al. Gene regulation of intestinal porcine epithelial cells IPEC-J2 is dependent on the site of deoxynivalenol toxicological action. PloS one. 2012;7.

Diesing Anne-Kathrin K., Nossol Constanze, Dänicke Sven, et al. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PloS one. 2011;6.

Diesing Anne-Kathrin K., Nossol Constanze, Panther Patricia, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicology letters. 2011;200:8–18.

Kruber Pierre, Trump Saskia, Behrens Johann, Lehmann Irina. T-2 toxin is a cytochrome P450 1A1 inducer and leads to MAPK/p38- but not aryl hydrocarbon receptor-dependent interleukin-8 secretion in the human intestinal epithelial cell line Caco-2. Toxicology. 2011;284:34–41.

De Walle Jacqueline Van V., Sergent Thérèse, Piront Neil, Toussaint Olivier, Schneider Yves-Jacques J., Larondelle Yvan. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicology and applied pharmacology. 2010;245:291–298.

Van De Walle Jacqueline, During Alexandrine, Piront Neil, Toussaint Olivier, Schneider Yves-Jacques J., Larondelle Yvan. Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicology in vitro : an international journal published in association with BIBRA. 2010;24:1890–1898.

Girish C. K., Smith T. K., Boermans H. J., Anil Kumar P., Girgis G. N.. Effects of dietary Fusarium mycotoxins on intestinal lymphocyte subset populations, cell proliferation and histological changes in avian lymphoid organs. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2010;48:3000–3007.

Yu Hai, Zhou Ting, Gong Jianhua, et al. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC microbiology. 2010;10.

Yang Hyun, Park Seong Hwan H., Choi Hye Jin J., et al. Mechanism-based alternative monitoring of endoplasmic reticulum stress by 8-keto-trichothecene mycotoxins using human intestinal epithelial cell line. Toxicology letters. 2010;198:317–323.

Girgis George N., Barta John R., Girish Channarayapatna K., Karrow Niel A., Boermans Herman J., Smith Trevor K.. Effects of feed-borne Fusarium mycotoxins and an organic mycotoxin adsorbent on immune cell dynamics in the jejunum of chickens infected with Eimeria maxima. Veterinary immunology and immunopathology. 2010;138:218–223.

Dänicke S., Hegewald Anne-Kathrin K., Kahlert S., et al. Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2, and on effects of DON and DONS on piglets. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2010;48:2154–2162.

Pinton Philippe, Braicu Cornelia, Nougayrede Jean-Philippe P., Laffitte Joëlle, Taranu Ionelia, Oswald Isabelle P.. Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. The Journal of nutrition. 2010;140:1956–1962.

Kolf-Clauw Martine, Castellote Jessie, Joly Benjamin, et al. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicology in vitro : an international journal published in association with BIBRA. 2009;23:1580–1584.

Waché Yann J., Valat Charlotte, Postollec Gilbert, et al. Impact of deoxynivalenol on the intestinal microflora of pigs. International journal of molecular sciences. 2009;10:1–17.

Pinton Philippe, Nougayrède Jean-Philippe P., Del Rio Juan-Carlos C., et al. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and applied pharmacology. 2009;237:41–48.

Yang Hyun, Chung Duk Hwa H., Kim Yung Bu B., Choi Yung Hyun H., Moon Yuseok. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. Toxicology. 2008;243:145–154.

Obremski K., Zielonka L., Gajecka M., et al. Histological estimation of the small intestine wall after administration of feed containing deoxynivalenol, T-2 toxin and zearalenone in the pig. Polish journal of veterinary sciences. 2008;11:339–345.

Awad W. A., Razzazi-Fazeli E., Böhm J., Zentek J.. Effects of B-trichothecenes on luminal glucose transport across the isolated jejunal epithelium of broiler chickens. Journal of animal physiology and animal nutrition. 2008;92:225–230.

Moon Yuseok, Yang Hyun, Park Seung-Hwan H.. Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-kappaB pathway: new lessons from endotoxin and ribotoxic deoxynivalenol. Toxicology and applied pharmacology. 2008;231:94–102.

Maresca Marc, Yahi Nouara, Younès-Sakr Lama, Boyron Marilyn, Caporiccio Bertrand, Fantini Jacques. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1beta effect and increase in the transepithelial passage of commensal bacteria. Toxicology and applied pharmacology. 2008;228:84–92.

Turner P. C., Wu Q. K., Piekkola S., Gratz S., Mykkänen H., El-Nezami H.. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2008;46:2118–2123.

Awad Wageha, Ghareeb Khaled, Böhm Josef, Zentek Jürgen. A nutritional approach for the management of deoxynivalenol (DON) toxicity in the gastrointestinal tract of growing chickens. International journal of molecular sciences. 2008;9:2505–2514.

Van De Walle Jacqueline, Romier Béatrice, Larondelle Yvan, Schneider Yves-Jacques J.. Influence of deoxynivalenol on NF-kappaB activation and IL-8 secretion in human intestinal Caco-2 cells. Toxicology letters. 2008;177:205–214.

Videmann Bernadette, Tep Jonathan, Cavret Séverine, Lecoeur Sylvaine. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2007;45:1938–1947.

Kouadio James H., Dano Sébastien D., Moukha Serge, Mobio Théophile A., Creppy Edmond E.. Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon. 2007;49:306–317.

Awad W. A., Aschenbach J. R., Setyabudi F. M., Razzazi-Fazeli E., Böhm J., Zentek J.. In vitro effects of deoxynivalenol on small intestinal D-glucose uptake and absorption of deoxynivalenol across the isolated jejunal epithelium of laying hens. Poultry science. 2007;86:15–20.

Moon Yuseok, Yang Hyun, Lee Soo Hyung H.. Modulation of early growth response gene 1 and interleukin-8 expression by ribotoxin deoxynivalenol (vomitoxin) via ERK1/2 in human epithelial intestine 407 cells. Biochemical and biophysical research communications. 2007;362:256–262.

Bony S., Olivier-Loiseau L., Carcelen M., Devaux A.. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicology in vitro : an international journal published in association with BIBRA. 2007;21:457–465.

Awad W. A., Razzazi-Fazeli E., Böhm J., Zentek J.. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens. Journal of animal physiology and animal nutrition. 2007;91:175–180.

Awad W. A., Böhm J., Razzazi-Fazeli E., Zentek J.. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. Journal of animal physiology and animal nutrition. 2006;90:32–37.

Sergent Thérèse, Parys Marie, Garsou Serge, Pussemier Luc, Schneider Yves-Jacques J., Larondelle Yvan. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicology letters. 2006;164:167–176.

Awad W. A., Rehman H., Böhm J., Razzazi-Fazeli E., Zentek J.. Effects of luminal deoxynivalenol and L-proline on electrophysiological parameters in the jejunums of laying hens. Poultry science. 2005;84:928–932.

Zerull K., Breves G., Schröder B., Goyarts B., Dänicke S.. The influence of the mycotoxin deoxynivalenol on jejunal glucose transport in pigs. Mycotoxin research. 2005;21:251–257.

Kouadio James H., Mobio Théophile A., Baudrimont Isabelle, Moukha Serge, Dano Sébastien D., Creppy Edmond E.. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology. 2005;213:56–65.

Awad W. A., Böhm J., Razzazi-Fazeli E., Zentek J.. In vitro effects of deoxynivalenol on electrical properties of intestinal mucosa of laying hens. Poultry science. 2005;84:921–927.

Awad W. A., Böhm J., Razzazi-Fazeli E., Hulan H. W., Zentek J.. Effects of deoxynivalenol on general performance and electrophysiological properties of intestinal mucosa of broiler chickens. Poultry science. 2004;83:1964–1972.

Avantaggiato Giuseppina, Havenaar Robert, Visconti Angelo. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2004;42:817–824.

Poapolathep Amnart, Ohtsuka Ryoichi, Kiatipattanasakul Wijit, Ishigami Noriaki, Nakayama Hiroyuki, Doi Kunio. Nivalenol–induced apoptosis in thymus, spleen and Peyer’s patches of mice. Experimental and toxicologic pathology. 2002;53:441–446.

Maresca Marc, Mahfoud Radhia, Garmy Nicolas, Fantini Jacques. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. The Journal of nutrition. 2002;132:2723–2731.

Nagata T., Suzuki H., Ishigami N., et al. Development of apoptosis and changes in lymphocyte subsets in thymus, mesenteric lymph nodes and Peyer’s patches of mice orally inoculated with T-2 toxin. Experimental and toxicologic pathology. 2001;53:309–315.

Madej M., Lundh T., Lindberg J. E.. Effect of exposure to dietary nivalenol on activity of enzymes involved in glutamine catabolism in the epithelium along the gastrointestinal tract of growing pigs. Archiv für Tierernährung. 1999;52:275–284.

Kasuga F., Hara-Kudo Y., Saito N., Kumagai S., Sugita-Konishi Y.. In vitro effect of deoxynivalenol on the differentiation of human colonic cell lines Caco-2 and T84. Mycopathologia. 1998;142:161–167.

Yan D., Zhou H. R., Brooks K. H., Pestka J. J.. Potential role for IL-5 and IL-6 in enhanced IgA secretion by Peyer’s patch cells isolated from mice acutely exposed to vomitoxin. Toxicology. 1997;122:145–158.

Li J., Shimizu T., Miyoshi N., Yasuda N.. Rapid apoptotic changes in the gastric glandular epithelium of rats administered intraperitoneally with fusarenon-X. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 1997;59:17–22.

Li G., Shinozuka J., Uetsuka K., Nakayama H., Doi K.. T-2 toxin-induced apoptosis in intestinal crypt epithelial cells of mice. Experimental and toxicologic pathology. 1997;49:447–450.

Ito E., Terao K.. Injury and recovery process of intestine caused by okadaic acid and related compounds. Natural toxins. 1994;2:371–377.

Rasooly L., Abouzied M. M., Brooks K. H., Pestka J. J.. Polyspecific and autoreactive IgA secreted by hybridomas derived from Peyer’s patches of vomitoxin-fed mice: characterization and possible pathogenic role in IgA nephropathy. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1994;32:337–348.

Ji X., Ke Y., Ning T., Liang Y., Wang D., Shi G.. Effects of sterigmatocystin and T-2 toxin on the induction of unscheduled DNA synthesis in primary cultures of human gastric epithelial cells. Natural toxins. 1994;2:115–119.

Hunder G., Schümann K., Strugala G., Gropp J., Fichtl B., Forth W.. Influence of subchronic exposure to low dietary deoxynivalenol, a trichothecene mycotoxin, on intestinal absorption of nutrients in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1991;29:809–814.

Bondy G. S., Pestka J. J.. Dietary exposure to the trichothecene vomitoxin (deoxynivalenol) stimulates terminal differentiation of Peyer’s patch B cells to IgA secreting plasma cells. Toxicology and applied pharmacology. 1991;108:520–530.

Pestka J. J., Dong W., Warner R. L., Rasooly L., Bondy G. S., Brooks K. H.. Elevated membrane IgA+ and CD4+ (T helper) populations in murine Peyer’s patch and splenic lymphocytes during dietary administration of the trichothecene vomitoxin (deoxynivalenol). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1990;28:409–420.

Pestka J. J., Moorman M. A., Warner R. L.. Altered serum immunoglobulin response to model intestinal antigens during dietary exposure to vomitoxin (deoxynivalenol). Toxicology letters. 1990;50:75–84.

Williams P. P.. Effects of T-2 mycotoxin on gastrointestinal tissues: a review of in vivo and in vitro models. Archives of environmental contamination and toxicology. 1989;18:374–387.

Morishita Y., Nagasawa K., Nakano N., Shiromizu K.. Bacterial overgrowth in the jejunum of ICR mice and Wistar rats orally administered with a single lethal dose of fusarenon-X, a trichothecene mycotoxin. The Journal of applied bacteriology. 1989;66:263–270.

Lun A. K., Moran E. T., Young L. G., McMillan E. G.. Disappearance of deoxynivalenol from digesta progressing along the chicken’s gastrointestinal tract after intubation with feed containing contaminated corn. Bulletin of environmental contamination and toxicology. 1988;40:317–324.

Kumagai S., Shimizu T.. Effects of fusarenon-X and T-2 toxin on intestinal absorption of monosaccharide in rats. Archives of toxicology. 1988;61:489–495.

Conrady-Lorck S., Gareis M., Feng X. C., Amselgruber W., Forth W., Fichtl B.. Metabolism of T-2 toxin in vascularly autoperfused jejunal loops of rats. Toxicology and applied pharmacology. 1988;94:23–33.

Ziprin R. L., Corrier D. E., Ziegler H. K.. T-2 toxin-enhanced resistance against listeriosis in mice: importance of gastrointestinal lesions. American journal of veterinary research. 1987;48:998–1002.

Fioramonti J., Fargeas M. J., Bueno L.. Action of T-2 toxin on gastrointestinal transit in mice: protective effect of an argillaceous compound. Toxicology letters. 1987;36:227–232.

Beasley V. R., Lundeen G. R., Poppenga R. H., Buck W. B.. Distribution of blood flow to the gastrointestinal tract of swine during T-2 toxin-induced shock. Fundamental and applied toxicology. 1987;9:588–594.

Matsuoka Y., Kubota K.. [Studies of mechanisms of diarrhea induced by fusarenon-X, a trichothecene mycotoxin from Fusarium species; the effects of fusarenon-X and various cathartics on the digestion and the absorption of the mouse intestine]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1985;105:77–82.

Suneja S. K., Ram G. C., Wagle D. S.. Effects of T-2 toxin on glucose and tryptophan uptake and intestinal mucosal enzymes. Toxicon. 1984;22:39–43.

Suneja S. K., Ram G. C., Wagle D. S.. Effects of feeding T-2 toxin on RNA, DNA and protein contents of liver and intestinal mucosa of rats. Toxicology letters. 1983;18:73–76.

Bukowski R., Vaughn C., Bottomley R., Chen T.. Phase II study of anguidine in gastrointestinal malignancies: a Southwest Oncology Group study. Cancer treatment reports. 1982;66:381–383.

Matsuoka Y., Kubota K.. Studies on mechanisms of diarrhea induced by fusarenon-X, a trichothecene mycotoxin from Fusarium species; characteristics of increased intestinal absorption rate induced by fusarenon-X. Journal of pharmacobio-dynamics. 1982;5:193–199.

Morel-Chany E., Burtin P., Trincal G., Frayssinet C.. Cytostatic effects of T2 toxin on cultured human neoplastic cells of intestinal origin. Bulletin du cancer. 1980;67:149–154.

Schoental R.. The role of fusarium mycotoxins in the aetiology of tumours of the digestive tract and of certain other organs in man and animals. Frontiers of gastrointestinal research. 1979;4:17–24.

Witlock D. R., Wyatt R. D., Ruff M. D.. Morphological changes in the avian intestine induced by citrinin and lack of effect of aflatoxin and T-2 toxin as seen with scanning electron microscopy. Toxicon. 1977;15:41–44.